Rice Science ›› 2018, Vol. 25 ›› Issue (6): 308-319.DOI: 10.1016/j.rsci.2018.10.001
• Research Papers • Previous Articles Next Articles
Mukherjee Mitadru1, Padhy Barada1, Srinivasan Bharathkumar2, Mahadani Pradosh1, Yasin Baksh Sk1, Donde Ravindra1, Nath Singh Onkar1, Behera Lambodar1, Swain Padmini3, Kumar Dash Sushanta1()
Received:
2018-03-09
Accepted:
2018-05-15
Online:
2018-11-28
Published:
2018-08-20
Mukherjee Mitadru, Padhy Barada, Srinivasan Bharathkumar, Mahadani Pradosh, Yasin Baksh Sk, Donde Ravindra, Nath Singh Onkar, Behera Lambodar, Swain Padmini, Kumar Dash Sushanta. Revealing Genetic Relationship and Prospecting of Novel Donors Among Upland Rice Genotypes Using qDTY-Linked SSR Markers[J]. Rice Science, 2018, 25(6): 308-319.
Add to citation manager EndNote|Ris|BibTeX
Genotype | Type | Origin | Genotype | Type | Origin |
---|---|---|---|---|---|
Way Rarem a | indica | Indonesia | Browngora | indica | India |
Vandana b | indica | India | Annada | indica | India |
Sahabhagi Dhan c | indica | India/the Philippines | Anjali | indica | India |
Hazaridhan | indica | India | Vanaprava | indica | India |
Kalyani-II | indica | India | Blackgora | indica | India |
NDR1045 | indica | India | Heera | indica | India |
Satyabhama | indica | India | Pathara | indica | India |
IR20 | indica | the Philippines | Poornima | indica | India |
Sadabahar | indica | India | Sidhant | indica | India |
Dular | indica | India | IR64 | indica | the Philippines |
Annapurna | indica | India | Azucena | japonica | the Philippines |
Kalinga-III | indica | India | Curinga | japonica | Brazil |
HND15 | indica | India | CR2702 | indica | India |
Khandagiri | indica | India | Mahulata | indica | India |
N22 d | indica | India | CR143-2-2 | indica | India |
Selumpikit | indica | India | CRMAS2620-1 | indica | India |
Table 1 Genotypes used in this study.
Genotype | Type | Origin | Genotype | Type | Origin |
---|---|---|---|---|---|
Way Rarem a | indica | Indonesia | Browngora | indica | India |
Vandana b | indica | India | Annada | indica | India |
Sahabhagi Dhan c | indica | India/the Philippines | Anjali | indica | India |
Hazaridhan | indica | India | Vanaprava | indica | India |
Kalyani-II | indica | India | Blackgora | indica | India |
NDR1045 | indica | India | Heera | indica | India |
Satyabhama | indica | India | Pathara | indica | India |
IR20 | indica | the Philippines | Poornima | indica | India |
Sadabahar | indica | India | Sidhant | indica | India |
Dular | indica | India | IR64 | indica | the Philippines |
Annapurna | indica | India | Azucena | japonica | the Philippines |
Kalinga-III | indica | India | Curinga | japonica | Brazil |
HND15 | indica | India | CR2702 | indica | India |
Khandagiri | indica | India | Mahulata | indica | India |
N22 d | indica | India | CR143-2-2 | indica | India |
Selumpikit | indica | India | CRMAS2620-1 | indica | India |
Marker | Repeat motif | Chr | qDTY | Product length (bp) | Na | Ne | TAF | He | PIC | Reference |
---|---|---|---|---|---|---|---|---|---|---|
RM431 | (AG)16 | 1 | qDTY1.1 | 175-200 | 2 | 1.932 | 0.406 | 0.49 | 0.484 | |
RM11943 | (GA)11 | 1 | qDTY1.1 | 75-90 | 2 | 1.6 | 0.25 | 0.381 | 0.376 | |
RM12091 | (AG)31 | 1 | qDTY1.1 | 135-150 | 2 | 1.932 | 0.594 | 0.49 | 0.484 | |
OSR17 | (AATT)5 | 2 | qDTY2.2 | 260-280 | 2 | 1.969 | 0.438 | 0.5 | 0.492 | |
RM555 | (AG)11 | 2 | qDTY2.2 | 220-230 | 2 | 1.678 | 0.719 | 0.41 | 0.405 | |
RM236 | (CT)18 | 2 | qDTY2.2 | 260-270 | 2 | 1.992 | 0.469 | 0.506 | 0.498 | |
RM573 | (GA)11 | 2 | qDTY2.3 | 200-215 | 2 | 1.822 | 0.656 | 0.458 | 0.452 | |
RM1367 | (AG)27 | 2 | qDTY2.3 | 250-275 | 2 | 1.822 | 0.344 | 0.458 | 0.452 | |
RM517 | (CT)15 | 3 | qDTY3.2 | 250-275 | 2 | 1.882 | 0.375 | 0.476 | 0.468 | |
RM523 | (TC)14 | 3 | qDTY3.2 | 190-210 | 2 | 1.932 | 0.406 | 0.49 | 0.484 | |
RM7332 | (ACAT)11 | 3 | qDTY3.2 | 220-235 | 2 | 1.969 | 0.438 | 0.5 | 0.492 | |
RM3 | (GA)2GG(GA)25 | 6 | qDTY6.2 | 100-150 | 3 | 1.784 | 0.281 | 0.446 | 0.662 | |
RM541 | (TC)16 | 6 | qDTY6.2 | 210-235 | 3 | 2.652 | 0.5 | 0.632 | 0.626 | |
RM5371 | (TC)13 | 6 | qDTY6.2 | 115-125 | 2 | 1.932 | 0.406 | 0.49 | 0.484 | |
RM28166 | (CT)12 | 12 | qDTY12.1 | 190-210 | 2 | 1.678 | 0.281 | 0.41 | 0.405 | |
RM28199 | (ATAG)5 | 12 | qDTY12.1 | 175-190 | 2 | 1.932 | 0.406 | 0.49 | 0.484 | |
RM511 | (GAC)7 | 12 | qDTY12.1 | 150-160 | 2 | 1.969 | 0.563 | 0.5 | 0.492 |
Table 2 Detail information of polymorphic markers.
Marker | Repeat motif | Chr | qDTY | Product length (bp) | Na | Ne | TAF | He | PIC | Reference |
---|---|---|---|---|---|---|---|---|---|---|
RM431 | (AG)16 | 1 | qDTY1.1 | 175-200 | 2 | 1.932 | 0.406 | 0.49 | 0.484 | |
RM11943 | (GA)11 | 1 | qDTY1.1 | 75-90 | 2 | 1.6 | 0.25 | 0.381 | 0.376 | |
RM12091 | (AG)31 | 1 | qDTY1.1 | 135-150 | 2 | 1.932 | 0.594 | 0.49 | 0.484 | |
OSR17 | (AATT)5 | 2 | qDTY2.2 | 260-280 | 2 | 1.969 | 0.438 | 0.5 | 0.492 | |
RM555 | (AG)11 | 2 | qDTY2.2 | 220-230 | 2 | 1.678 | 0.719 | 0.41 | 0.405 | |
RM236 | (CT)18 | 2 | qDTY2.2 | 260-270 | 2 | 1.992 | 0.469 | 0.506 | 0.498 | |
RM573 | (GA)11 | 2 | qDTY2.3 | 200-215 | 2 | 1.822 | 0.656 | 0.458 | 0.452 | |
RM1367 | (AG)27 | 2 | qDTY2.3 | 250-275 | 2 | 1.822 | 0.344 | 0.458 | 0.452 | |
RM517 | (CT)15 | 3 | qDTY3.2 | 250-275 | 2 | 1.882 | 0.375 | 0.476 | 0.468 | |
RM523 | (TC)14 | 3 | qDTY3.2 | 190-210 | 2 | 1.932 | 0.406 | 0.49 | 0.484 | |
RM7332 | (ACAT)11 | 3 | qDTY3.2 | 220-235 | 2 | 1.969 | 0.438 | 0.5 | 0.492 | |
RM3 | (GA)2GG(GA)25 | 6 | qDTY6.2 | 100-150 | 3 | 1.784 | 0.281 | 0.446 | 0.662 | |
RM541 | (TC)16 | 6 | qDTY6.2 | 210-235 | 3 | 2.652 | 0.5 | 0.632 | 0.626 | |
RM5371 | (TC)13 | 6 | qDTY6.2 | 115-125 | 2 | 1.932 | 0.406 | 0.49 | 0.484 | |
RM28166 | (CT)12 | 12 | qDTY12.1 | 190-210 | 2 | 1.678 | 0.281 | 0.41 | 0.405 | |
RM28199 | (ATAG)5 | 12 | qDTY12.1 | 175-190 | 2 | 1.932 | 0.406 | 0.49 | 0.484 | |
RM511 | (GAC)7 | 12 | qDTY12.1 | 150-160 | 2 | 1.969 | 0.563 | 0.5 | 0.492 |
Genotype | Q1 | Q2 | Q3 | Sub-population | Genotype | Q1 | Q2 | Q3 | Sub-population |
---|---|---|---|---|---|---|---|---|---|
Vandana | 0.965 | 0.019 | 0.016 | SP1 | Sidhant | 0.014 | 0.863 | 0.123 | SP2 |
Mahulata | 0.957 | 0.016 | 0.026 | SP1 | IR20 | 0.071 | 0.785 | 0.144 | SP2 admix |
CR143-2-2 | 0.946 | 0.033 | 0.022 | SP1 | Hazaridhan | 0.228 | 0.653 | 0.119 | SP2 admix |
CR2702 | 0.938 | 0.051 | 0.011 | SP1 | IR64 | 0.018 | 0.568 | 0.414 | SP2 admix |
N22 | 0.935 | 0.014 | 0.051 | SP1 | Anjali | 0.01 | 0.504 | 0.485 | SP2 admix |
Selumpikit | 0.923 | 0.029 | 0.048 | SP1 | Annapurna | 0.012 | 0.017 | 0.971 | SP3 |
Azucena | 0.913 | 0.029 | 0.058 | SP1 | Heera | 0.027 | 0.027 | 0.946 | SP3 |
Pathara | 0.874 | 0.08 | 0.046 | SP1 | Sadabahar | 0.037 | 0.022 | 0.941 | SP3 |
Sahabhagi Dhan | 0.802 | 0.186 | 0.011 | SP1 | Vanaprava | 0.036 | 0.023 | 0.941 | SP3 |
Curinga | 0.783 | 0.123 | 0.094 | SP1 admix | Kalyani-II | 0.021 | 0.058 | 0.921 | SP3 |
NDR1045 | 0.671 | 0.306 | 0.023 | SP1 admix | Kalinga-III | 0.061 | 0.021 | 0.917 | SP3 |
CRMAS2620-1 | 0.021 | 0.957 | 0.021 | SP2 | Satyabhama | 0.056 | 0.034 | 0.91 | SP3 |
Poornima | 0.074 | 0.911 | 0.015 | SP2 | HND15 | 0.104 | 0.035 | 0.861 | SP3 |
Annada | 0.057 | 0.872 | 0.072 | SP2 | Dular | 0.028 | 0.123 | 0.849 | SP3 |
Way Rarem | 0.028 | 0.871 | 0.101 | SP2 | Khandagiri | 0.022 | 0.442 | 0.536 | SP3 admix |
Blackgora | 0.022 | 0.866 | 0.113 | SP2 | Browngora | 0.029 | 0.484 | 0.487 | SP3 admix |
Table 3 Grouping of upland genotypes into three sub-populations based on their inferred ancestry.
Genotype | Q1 | Q2 | Q3 | Sub-population | Genotype | Q1 | Q2 | Q3 | Sub-population |
---|---|---|---|---|---|---|---|---|---|
Vandana | 0.965 | 0.019 | 0.016 | SP1 | Sidhant | 0.014 | 0.863 | 0.123 | SP2 |
Mahulata | 0.957 | 0.016 | 0.026 | SP1 | IR20 | 0.071 | 0.785 | 0.144 | SP2 admix |
CR143-2-2 | 0.946 | 0.033 | 0.022 | SP1 | Hazaridhan | 0.228 | 0.653 | 0.119 | SP2 admix |
CR2702 | 0.938 | 0.051 | 0.011 | SP1 | IR64 | 0.018 | 0.568 | 0.414 | SP2 admix |
N22 | 0.935 | 0.014 | 0.051 | SP1 | Anjali | 0.01 | 0.504 | 0.485 | SP2 admix |
Selumpikit | 0.923 | 0.029 | 0.048 | SP1 | Annapurna | 0.012 | 0.017 | 0.971 | SP3 |
Azucena | 0.913 | 0.029 | 0.058 | SP1 | Heera | 0.027 | 0.027 | 0.946 | SP3 |
Pathara | 0.874 | 0.08 | 0.046 | SP1 | Sadabahar | 0.037 | 0.022 | 0.941 | SP3 |
Sahabhagi Dhan | 0.802 | 0.186 | 0.011 | SP1 | Vanaprava | 0.036 | 0.023 | 0.941 | SP3 |
Curinga | 0.783 | 0.123 | 0.094 | SP1 admix | Kalyani-II | 0.021 | 0.058 | 0.921 | SP3 |
NDR1045 | 0.671 | 0.306 | 0.023 | SP1 admix | Kalinga-III | 0.061 | 0.021 | 0.917 | SP3 |
CRMAS2620-1 | 0.021 | 0.957 | 0.021 | SP2 | Satyabhama | 0.056 | 0.034 | 0.91 | SP3 |
Poornima | 0.074 | 0.911 | 0.015 | SP2 | HND15 | 0.104 | 0.035 | 0.861 | SP3 |
Annada | 0.057 | 0.872 | 0.072 | SP2 | Dular | 0.028 | 0.123 | 0.849 | SP3 |
Way Rarem | 0.028 | 0.871 | 0.101 | SP2 | Khandagiri | 0.022 | 0.442 | 0.536 | SP3 admix |
Blackgora | 0.022 | 0.866 | 0.113 | SP2 | Browngora | 0.029 | 0.484 | 0.487 | SP3 admix |
Source of variation | df | SS | MS | EVC | PTV | P-value |
---|---|---|---|---|---|---|
Among sub-populations | 2 | 61.907 | 30.953 | 1.138 | 25% | 0.001 |
Within sub-populations | 29 | 194.218 | 6.697 | 3.349 | 75% | 0.001 |
Total | 31 | 256.125 | 4.487 | 100% | 0.001 |
Table 4 Analysis of Molecular Variance of three sub-populations of upland rice genotypes.
Source of variation | df | SS | MS | EVC | PTV | P-value |
---|---|---|---|---|---|---|
Among sub-populations | 2 | 61.907 | 30.953 | 1.138 | 25% | 0.001 |
Within sub-populations | 29 | 194.218 | 6.697 | 3.349 | 75% | 0.001 |
Total | 31 | 256.125 | 4.487 | 100% | 0.001 |
Genotype | qDTYs present |
---|---|
Sahabhagi Dhan | qDTY1.1, qDTY2.2, qDTY12.1 |
Browngora | qDTY3.2 |
NDR1045 | qDTY2.2 |
Satyabhama | qDTY2.2, qDTY3.2 |
Dular | qDTY6.2 |
Sadabahar | qDTY2.3 |
Annapurna | qDTY2.3 |
Selumpikit | qDTY1.1, qDTY6.2, qDTY2.3, qDTY3.2 |
Heera | qDTY3.2 |
Pathara | qDTY3.2 |
Azucena | qDTY1.1, qDTY2.2, qDTY2.3, qDTY3.2 |
Curinga | qDTY2.2, qDTY3.2, qDTY12.1, qDTY2.3 |
CR2702 | qDTY1.1, qDTY3.2, qDTY6.2 |
Mahulata | qDTY1.1, qDTY2.2, qDTY12.1 |
CR143-2-2 | qDTY1.1, qDTY2.2, qDTY3.2 |
CRMAS2620-1 | qDTY12.1 |
Table 5 Newly identified donors and corresponding qDTYs.
Genotype | qDTYs present |
---|---|
Sahabhagi Dhan | qDTY1.1, qDTY2.2, qDTY12.1 |
Browngora | qDTY3.2 |
NDR1045 | qDTY2.2 |
Satyabhama | qDTY2.2, qDTY3.2 |
Dular | qDTY6.2 |
Sadabahar | qDTY2.3 |
Annapurna | qDTY2.3 |
Selumpikit | qDTY1.1, qDTY6.2, qDTY2.3, qDTY3.2 |
Heera | qDTY3.2 |
Pathara | qDTY3.2 |
Azucena | qDTY1.1, qDTY2.2, qDTY2.3, qDTY3.2 |
Curinga | qDTY2.2, qDTY3.2, qDTY12.1, qDTY2.3 |
CR2702 | qDTY1.1, qDTY3.2, qDTY6.2 |
Mahulata | qDTY1.1, qDTY2.2, qDTY12.1 |
CR143-2-2 | qDTY1.1, qDTY2.2, qDTY3.2 |
CRMAS2620-1 | qDTY12.1 |
Genotype | Grain yield (t/hm2) | RYR (%) | Stress tolerance index | Genotype | Grain yield (t/hm2) | RYR (%) | Stress tolerance index | ||
---|---|---|---|---|---|---|---|---|---|
Control | Stress | Control | Stress | ||||||
Way Rarem | 3.2 | 0.87 | 72.81 | 1.18 | Browngora | 2.94 | 1.38 | 53.06 | 0.86 |
Vandana | 3.87 | 2.3 | 40.57 | 0.66 | Annada | 2.9 | 1.08 | 62.76 | 1.02 |
Sahabhagi Dhan | 3.32 | 1.8 | 45.78 | 0.74 | Anjali | 3.33 | 1.08 | 67.57 | 1.1 |
Hazaridhan | 2.8 | 1.07 | 61.79 | 1 | Vanaprava | 2.6 | 1.05 | 59.62 | 0.97 |
Kalyani-II | 2.4 | 0.98 | 59.17 | 0.96 | Blackgora | 2.5 | 0.64 | 74.4 | 1.21 |
NDR1045 | 2.23 | 1.09 | 51.12 | 0.83 | Heera | 2.2 | 1.05 | 52.27 | 0.85 |
Satyabhama | 2.67 | 1.33 | 50.19 | 0.82 | Pathara | 2.33 | 1.14 | 51.07 | 0.83 |
IR20 | 3.2 | 0.4 | 87.5 | 1.42 | Poornima | 3.1 | 0.95 | 69.35 | 1.13 |
Sadabahar | 2.67 | 1.14 | 57.3 | 0.93 | Sidhant | 3 | 1.04 | 65.33 | 1.06 |
Dular | 1.74 | 0.8 | 54.02 | 0.88 | IR64 | 3.6 | 0.47 | 86.94 | 1.41 |
Annapurna | 3.2 | 1.43 | 55.31 | 0.9 | Azucena | 3.36 | 1.78 | 47.02 | 0.76 |
Kalinga-III | 3.08 | 1.28 | 58.44 | 0.95 | Curinga | 3.23 | 1.72 | 46.75 | 0.76 |
HND15 | 2.95 | 1.19 | 59.66 | 0.97 | CR2702 | 2.23 | 1.2 | 46.19 | 0.75 |
Khandagiri | 3 | 1.09 | 63.67 | 1.04 | Mahulata | 2.84 | 1.43 | 49.65 | 0.81 |
N22 | 2.8 | 1.6 | 42.86 | 0.7 | CR143-2-2 | 2.1 | 1.5 | 28.57 | 0.46 |
Selumpikit | 3.2 | 1.66 | 48.13 | 0.78 | CRMAS2620-1 | 1.71 | 0.48 | 71.93 | 1.17 |
Table 6 Grain yield and yield reduction percentage (RYR) of upland genotypes.
Genotype | Grain yield (t/hm2) | RYR (%) | Stress tolerance index | Genotype | Grain yield (t/hm2) | RYR (%) | Stress tolerance index | ||
---|---|---|---|---|---|---|---|---|---|
Control | Stress | Control | Stress | ||||||
Way Rarem | 3.2 | 0.87 | 72.81 | 1.18 | Browngora | 2.94 | 1.38 | 53.06 | 0.86 |
Vandana | 3.87 | 2.3 | 40.57 | 0.66 | Annada | 2.9 | 1.08 | 62.76 | 1.02 |
Sahabhagi Dhan | 3.32 | 1.8 | 45.78 | 0.74 | Anjali | 3.33 | 1.08 | 67.57 | 1.1 |
Hazaridhan | 2.8 | 1.07 | 61.79 | 1 | Vanaprava | 2.6 | 1.05 | 59.62 | 0.97 |
Kalyani-II | 2.4 | 0.98 | 59.17 | 0.96 | Blackgora | 2.5 | 0.64 | 74.4 | 1.21 |
NDR1045 | 2.23 | 1.09 | 51.12 | 0.83 | Heera | 2.2 | 1.05 | 52.27 | 0.85 |
Satyabhama | 2.67 | 1.33 | 50.19 | 0.82 | Pathara | 2.33 | 1.14 | 51.07 | 0.83 |
IR20 | 3.2 | 0.4 | 87.5 | 1.42 | Poornima | 3.1 | 0.95 | 69.35 | 1.13 |
Sadabahar | 2.67 | 1.14 | 57.3 | 0.93 | Sidhant | 3 | 1.04 | 65.33 | 1.06 |
Dular | 1.74 | 0.8 | 54.02 | 0.88 | IR64 | 3.6 | 0.47 | 86.94 | 1.41 |
Annapurna | 3.2 | 1.43 | 55.31 | 0.9 | Azucena | 3.36 | 1.78 | 47.02 | 0.76 |
Kalinga-III | 3.08 | 1.28 | 58.44 | 0.95 | Curinga | 3.23 | 1.72 | 46.75 | 0.76 |
HND15 | 2.95 | 1.19 | 59.66 | 0.97 | CR2702 | 2.23 | 1.2 | 46.19 | 0.75 |
Khandagiri | 3 | 1.09 | 63.67 | 1.04 | Mahulata | 2.84 | 1.43 | 49.65 | 0.81 |
N22 | 2.8 | 1.6 | 42.86 | 0.7 | CR143-2-2 | 2.1 | 1.5 | 28.57 | 0.46 |
Selumpikit | 3.2 | 1.66 | 48.13 | 0.78 | CRMAS2620-1 | 1.71 | 0.48 | 71.93 | 1.17 |
[1] | Adhya T K, Singh O N, Swain P, Ghosh A.2008. Rice in Eastern India: Causes for low productivity and available options.J Rice Res, 2: 1-5. |
[2] | Agricultural Statistics at a Glance.2014. Government of India Ministry of Agriculture Department of Agriculture & Cooperation Directorate of Economics & Statistics: 63. |
[3] | Ahmad R, Quadir S, Ahmad N, Shah K H.2003. Yield potential and stability of nine wheat varieties under water stress conditions. Int J Agric Biol, 5(1): 7-9. |
[4] | Ali M L, McClung A M, Jia M H, Kimball J A, McCouch S R, Georgia C E.2011. A rice diversity panel evaluated for genetic and agro-morphological diversity between subpopulations and its geographic distribution.Crop Sci, 51(5): 2021-2035. |
[5] | Anderson J A, Churchill G A, Autrique J E, Tanksley S D, Sorrels M E.1993. Optimizing parental selection for genetic maps.Genome, 36(1): 181-186. |
[6] | Barik Madhusmita, Dash S K, Padhi S, Swain P.2017. Effect of drought on morpho-physiological, yield and yield traits of chromosome segment substitution lines (CSSLs) derived from wild species of rice.Oryza, 54(1): 65-72. |
[7] | Bernier J, Kumar A, Ramaiah V, Spaner D, Atlin G.2007. A large-effect QTL forgrain yield under reproductive-stage drought stress in upland rice.Crop Sci, 47(2): 507-516. |
[8] | Boonjung H, Fukai S.1996. Effects of soil water deficit at different growth stage on rice growth and yield under upland conditions: 2. Phenology, biomass production and yield.Field Crops Res, 48(1): 47-55. |
[9] | Botstein D, White R L, Skolnick M, Davis R W.1980. Construction of a genetic linkage map in man using restriction fragment length polymorphism.Am J Hum Genet, 32(3): 314-331. |
[10] | Chakhonkaen S, Pitnjam K, Saisuk W, Ukoskit K, Muangprom A.2012. Genetic structure of Thai rice and rice accessions obtained from the international rice research institute.Rice, 5: 19. |
[11] | Courtois B, Frouin J, Greco R, Bruschi G, Droc G, Hamelin C, Ruiz M, Clément G, Evrard J C, van Coppenole S, Katsantonis D, Oliveira M, Negrao S, Matos C, Cavigiolo S, Lupotto E, Piffanelli P, Ahmadi N.2012. Genetic diversity and population structure in a European collection of rice.Crop Sci, 52(4): 1663-1675. |
[12] | Das B, Sengupta S, Parida S K, Roy B, Ghosh M, Prasad M, Ghose T K.2013. Genetic diversity and population structure of rice landraces from Eastern and North Eastern States of India.BMC Genet, 14: 71-84. |
[13] | Dixit S, Swamy B P M, Vikram P, Ahmed H U, Sta Cruz M T, Amante M, Atri D, Leung H, Kumar A.2012a. Fine mapping of QTLs for rice grain yield under drought reveals sub-QTLs conferring a response to variable drought severities.Theor Appl Genet, 125(1): 155-169. |
[14] | Dixit S, Swamy B P M, Vikram P, Bernier J, Sta Cruz M T, Amante M, Atri D, Kumar A.2012b. Increased drought tolerance and wider adaptability ofqDTY12.1 conferred by its interaction with qDTY2.3 and qDTY3.2. Mol Breeding, 30: 1767-1779. |
[15] | Evanno G, Regnaut S, Goudet J.2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study.Mol Ecol, 14(8): 2611-2620. |
[16] | Fischer R A, Maurer R.1978. Drought resistance in spring wheat cultivars: I. Grain yield responses in spring wheat.Aust J Agric Res, 29(5): 892-912. |
[17] | Gao L Z.2005. Microsatellite diversity and population genetic structure of an endangered wild rice,Oryza officinalis(Poaceae) from China. Mol Ecol, 14(14): 4287-4297. |
[18] | Ghimire K H, Quiatchon-Baeza L A, Vikram P, Swamy B P M, Dixit S, Ahmed H U, Hernandez J E, Borromeo T H, Kumar A.2012. Identification and mapping of QTL (qDTY1.1) with a consistent effect on grain yield under drought. Field Crops Res, 131: 88-96. |
[19] | IRRI. 2017. Trends in global rice consumption. . |
[20] | Kumar A, Verulkar S B, Dixit S, Chauhan B, Bernier J, Venuprasad R, Zhao D, Shrivastava M N.2009. Yield and yield-attributing traits of rice (Oryza sativa L.) under lowland drought and suitability of early vigor as a selection criterion. Field Crops Res, 114(1): 99-107. |
[21] | Mishra K K, Vikram P, Yadaw R B, Swamy B P M, Dixit S, Sta Cruz M T S, Maturan P, Marker S, Kumar A.2013. qDTY12.1: A locus with consistent effect on grain yield under drought in rice. BMC Genet, 14: 12-21. |
[22] | Nagaraju J, Kathirvel M, Kumar R R, Siddiq E A, Hasnain S E.2002. Genetic analysis of traditional and evolved Basmati and non- Basmati rice varieties by using fluorescence-based ISSR-PCR and SSR markers.Proc Natl Acad Sci USA, 99: 5836-5841. |
[23] | Nei M.1972. Genetic distance between populations.Am Nat, 106: 283-292. |
[24] | Pachauri V, Taneja N, Vikram P, Singh N K, Singh S.2013. Molecular and morphological characterization of India farmers rice varieties.Aust J Crop Sci, 7(7): 923-932. |
[25] | Peakall R, Smouse P E.2006. GENALEX 6: Genetic analysis in Excel: Population genetic software for teaching and research.Mol Ecol Notes, 6: 288-295. |
[26] | Peakall R, Smouse P E.2012. GenAlEx 6.5: Genetic analysis in Excel: Population genetic software for teaching and research: An update.Bioinformatics, 28: 2537-2539. |
[27] | Perrier X, Flori A, Bonnot F.2003. Data analysis methods. In: Hamon P, Seguin M, Perrier X, Glaszmann J C. Genetic diversity of cultivated tropical plants. Montpellier France: Enfield(Science Publishers): 43-76. |
[28] | Perrier X, Jacquemoud-Collet J P. 2006. DARwin software Jacquemoud-Collet J P. 2006. DARwin software [<date-in-citation content-type="access-date">2017/10/15</date-in-citation>]. |
[29] | Pradhan S K, Barik S R, Sahoo A, Mohapatra S, Nayak D K, Mahender A, Meher J, Anandan A, Pandit E.2016. Population structure, genetic diversity and molecular marker-trait association analysis for high temperature stress tolerance in rice.PLoS One, 11: e0160027. |
[30] | Pritchard J K, Stephens M, Donnelly P.2000. Inference of population structure using multilocus genotype data.Genetics, 155(2): 945-959. |
[31] | Rai M.2003. Genetic diversity in rice production: Past contribution and the potential of utilization for sustainable rice production. In: Tran D V, Duffy R. Sustainable Rice Production for Food Security: Proceedings of the 20th session of the International Rice Commission. Bangkok, United Nations: Food and Agricultural Organization. |
[32] | Ramadan E A, Elmoghazy A M, El-Mowafi H F.2015. Molecular markers based genetic diversity analysis for drought tolerance in rice (Oryza sativa L.) using SSR markers. Int J Sci Res Agric Sci, 2: 137-146. |
[33] | Ricepedia. 2017. The online authority on rice: Rice productivity. . |
[34] | Roy S, Bannerjee A, Mawkhlieng B, Misra A K, Pattanayak A, Harish G D, Singh S K, Ngachan S V, Bansal K C.2015. Genetic diversity and population structure in aromatic and quality rice (Oryza sativa L.) landraces from North Eastern India. PLoS One, 10: e0129607. |
[35] | Salem K F M, Sallam A.2016. Analysis of population structure and genetic diversity of Egyptian and exotic rice (Oryza sativa L.) genotypes. CR Biolog, 339(1): 1-9. |
[36] | Shamsudin N A A, Swamy B P M, Ratnam W, Sta Cruz M T, Raman A, Kumar A.2016. Marker assisted pyramiding of drought QTLs into a popular Malaysian rice cultivar MR219.BMC Genet, 17: 30-43. |
[37] | Shodhganga. 2017. Abstract. [<date-in-citation content-type="access-date">2017/11/17</date-in-citation>]. |
[38] | Siddiq E A.2000. Bridging the rice yield gap in India. In: Papademetriou M K, Dent F J, Herath E M. Bridging the Rice Yield Gap in Asia and Pacific Regions . Bangkok,United Nations: Food and Agricultural Organization: 84-111. |
[39] | Sika K C, Kefela T, Sagbadja H A, Ahoton L, Saidou A, Baba- Moussa L, Baptiste L J, Kotconi S O, Gachomo E W.2015. A simple and efficient genomic DNA extraction protocol for large scale genetic analyses of plant biological systems.Plant Gene, 1: 43-45. |
[40] | Singh N, Choudhury D R, Singh A K, Kumar S, Srinivasan K, Tyagi R K, Singh N K, Singh R.2013. Comparison of SSR and SNP markers in estimation of genetic diversity and population structure of Indian rice varieties.PLoS One, 8: e84136. |
[41] | Singh N, Choudhury D R, Tiwari G, Singh A K, Kumar S, Srinivasan K, Tyagi R K, Sharma A D, Singh N K, Singh R.2016. Genetic diversity trend in Indian rice varieties: An analysis using SSR markers.BMC Genet, 17: 127-139. |
[42] | Swamy B P M, Ahmed H U, Henry A, Mauleon R, Dixit S, Vikram P, Tilatto R, Verulkar S B, Perraju P, Mandal N P, Variar M, Robin S, Chandrababu R, Singh O N, Dwivedi J L, Das S P, Mishra K K, Yadaw R B, Aditya T L, Karmakar B, Satoh K, Moumeni A, Kikuchi S, Leung H, Kumar A.2013. Genetic, physiological, and gene expression analyses reveal that multiple QTL enhance yield of rice mega-variety IR64 under drought.PLoS One, 8: e62795. |
[43] | Swamy B P M, Shamsudin N A A, Rahman S N A, Mauleon R, RatnamW, Sta Cruz M T, Kumar A.2017. Association mapping of yield and yield-related traits under reproductive stage drought stress in rice (Oryza sativa L.). Rice, 10: 21-33. |
[44] | Tarang A, Gashti A B.2016. The power of microsatellite markers and AFLPs in revealing the genetic diversity of Hashemi aromatic rice from Iran.J Int Agric, 15(6): 1186-1197. |
[45] | Venuprasad R, Lafitte H R, Atlin G N.2007. Response to direct selection for grain yield under drought stress in rice.Crop Sci, 47: 285-293. |
[46] | Venuprasad R, Sta Cruz M T, Amante M, Magbanua R, Kumar A, Atlin G A.2008. Response to two cycles of divergent selection for grain yield under drought stress in four rice breeding populations.Field Crops Res, 107(3): 232-244. |
[47] | Verulkar S B, Mandal N P, Dwivedi J L, Singh B N, Sinha P K, Mahato R N, Dongre P, Singh O N, Bose L K, Swain P, Robin S, Chandrababu R, Senthil S, Jain A, Shashidhar H E, Hittalmani S, Vera Cruz C, Paris T, Raman A, Haefele S, Serraj R, Atlin G, Kumar A.2010. Breeding resilient and productive genotypes adapted to drought-prone rainfed ecosystem of India.Field Crops Res, 117: 197-208. |
[48] | Vikram P, Swamy B P M, Dixit S, Singh R, Singh B P, Miro B, Kohli A, Henry A, Singh N K, Kumar A.2015. Drought susceptibility of modern rice varieties: An effect of linkage of drought tolerance with undesirable traits.Sci Rep, 5: e14799. |
[49] | Vikram P, Swamy B P M, Dixit S, Ahmed H U, Sta Cruz M T, Singh A K, Kumar A.2011. qDTY1.1, major QTL for rice GY under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet, 12: 89-104. |
[50] | Yadav S, Singh A, Singh M R, Goel N, Vinod K K, Mohapatra T, Singh A K.2013. Assessment of genetic diversity in Indian rice germplasm (Oryza sativa L.): Use of random versus trait linked microsatellite markers. J Genet, 92(3): 545-557. |
[51] | Yadaw R B, Dixit S, Raman A, Mishra K K, Vikram P, Swamy B P M, Sta Cruz M T, Maturan P T, Pandey M, Kumar A.2013. A QTL for high grain yield under lowland drought in the background of popular rice variety Sabitri from Nepal.Field Crops Res, 144: 281-287. |
[52] | Yeh F C, Boyle T J B.1997. Population genetic analysis of co-dominant and dominant markers and quantitative traits.Belg J Bot, 129: 157-163. |
[53] | Yu S B, Xu W J, Vijayakumar C H M, Ali J, Fu B Y, Xu J L, Jiang Y Z, Marghirang R, Domingo J, Aquino C, Virmani S S, Li Z K.2003. Molecular diversity and multilocus organization of the parental lines used in the International Rice Molecular Breeding Program.Theor Appl Genet, 108(1): 131-140. |
[54] | Zhang T, Ni X L, Jiang K F, Deng H F, He Q, Yang Q H, Yang L, Wan X Q, Cao Y J, Zheng J K.2010. Relation between heterosis and parental genetic distance based on molecular markers for functional genes related to yield traits in rice.Rice Sci, 17(4): 288-295. |
[1] | JI Dongling, XIAO Wenhui, SUN Zhiwei, LIU Lijun, GU Junfei, ZHANG Hao, Tom Matthew HARRISON, LIU Ke, WANG Zhiqin, WANG Weilu, YANG Jianchang. Translocation and Distribution of Carbon-Nitrogen in Relation to Rice Yield and Grain Quality as Affected by High Temperature at Early Panicle Initiation Stage [J]. Rice Science, 2023, 30(6): 12-. |
[2] | Oyebanji O. Alagbo, Oluyemisi A. Akinyemiju, Bhagirath S. Chauhan. Weed Management in Rainfed Upland Rice Fields under Varied Agro-Ecologies in Nigeria [J]. Rice Science, 2022, 29(4): 328-339. |
[3] | Balija Vishalakshi, Bangale Umakanth, Ponnuvel Senguttuvel, Makarand Barbadikar Kalyani, Prasad Madamshetty Srinivas, Rao Durbha Sanjeeva, Yadla Hari, Madhav Maganti Sheshu. Improvement of Upland Rice Variety by Pyramiding Drought Tolerance QTL with Two Major Blast Resistance Genes for Sustainable Rice Production [J]. Rice Science, 2021, 28(5): 493-500. |
[4] | Rakotoson Tatiana, Dusserre Julie, Letourmy Philippe, Frouin Julien, Ramonta Ratsimiala Isabelle, Victorine Rakotoarisoa Noronirina, Cao Tuong-Vi, Vom Brocke Kirsten, Ramanantsoanirina Alain, Ahmadi Nourollah, Raboin Louis-Marie. Genome-Wide Association Study of Nitrogen Use Efficiency and Agronomic Traits in Upland Rice [J]. Rice Science, 2021, 28(4): 379-390. |
[5] | Minghua Zhang, Zhaowen Mo, Juan Liao, Shenggang Pan, Xiongfei Chen, Le Zheng, Xiwen Luo, Zaiman Wang. Lodging Resistance Related to Root Traits for Mechanized Wet-Seeding of Two Super Rice Cultivars [J]. Rice Science, 2021, 28(2): 200-208. |
[6] | Yuyu Chen, Aike Zhu, Pao Xue, Xiaoxia Wen, Yongrun Cao, Beifang Wang, Yue Zhang, Liaqat Shah, Shihua Cheng, Liyong Cao, Yingxin Zhang. Effects of GS3 and GL3.1 for Grain Size Editing by CRISPR/Cas9 in Rice [J]. Rice Science, 2020, 27(5): 405-413. |
[7] | Pandit Elssa, Kumar Panda Rajendra, Sahoo Auromeera, Ranjan Pani Dipti, Kumar Pradhan Sharat. Genetic Relationship and Structure Analysis of Root Growth Angle for Improvement of Drought Avoidance in Early and Mid-Early Maturing Rice Genotypes [J]. Rice Science, 2020, 27(2): 124-132. |
[8] | Nguyen Le Tieu-Ngoc, Lee Beomgi, Back Kyoungwhan, Soon Kim Young, Cheong Hyeonsook. Coordinated Expression of Cytosolic and Chloroplastic Glutamine Synthetase During Reproductive Stage and Its Impact in GS1 RNAi Transgenic Rice [J]. Rice Science, 2018, 25(5): 250-260. |
[9] | Xiongsiyee Vua, Rerkasem Benjavan, Veeradittakit Jeeraporn, Saenchai Chorpet, Lordkaew Sittichai, Thebault Prom-u-thai Chanakan. Variation in Grain Quality of Upland Rice from Luang Prabang Province, Lao PDR [J]. Rice Science, 2018, 25(2): 94-102. |
[10] | Haritha G., P. M. Swamy B., L. Naik M., Jyothi B., Divya B., Malathi S., Sarla N.. Yield Traits and Associated Marker Segregation in Elite Introgression Lines Derived from O. sativa × O. nivara [J]. Rice Science, 2018, 25(1): 19-31. |
[11] | Mohibul Alam Khan Md, Haque Effi, Chandra Paul Narayan, Abdul Khaleque Md, M. S. Al-Garni Saleh, Rahman Mahfuzur, Tofazzal Islam Md. Enhancement of Growth and Grain Yield of Rice in Nutrient Deficient Soils by Rice Probiotic Bacteria [J]. Rice Science, 2017, 24(5): 264-273. |
[12] | Rekha Talukdar Preeti, Rathi Sunayana, Pathak Khanin, Kumar Chetia Sanjay, Nath Sarma Ramendra. Population Structure and Marker-Trait Association in Indigenous Aromatic Rice [J]. Rice Science, 2017, 24(3): 145-154. |
[13] | Sharifi Peyman, Aminpanah Hashem, Erfani Rahman, Mohaddesi Ali, Abbasian Abouzar. Evaluation of Genotype × Environment Interaction in Rice Based on AMMI Model in Iran [J]. Rice Science, 2017, 24(3): 173-180. |
[14] | Vivitha P., Raveendran M., Vijayalakshmi D.. Introgression of QTLs Controlling Spikelet Fertility Maintains Membrane Integrity and Grain Yield in Improved White Ponni Derived Progenies Exposed to Heat Stress [J]. Rice Science, 2017, 24(1): 32-40. |
[15] | Amanullah, Hidayatullah. Influence of Organic and Inorganic Nitrogen on Grain Yield and Yield Components of Hybrid Rice in Northwestern Pakistan [J]. Rice Science, 2016, 23(6): 326-333. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||